

Available online at www.sciencedirect.com



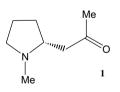
Tetrahedron Letters

Tetrahedron Letters 49 (2008) 3995-3996

## A short synthesis of (+)-hygrine

Enzo B. Arévalo-García<sup>a,b,\*</sup>, Juan Carlos Q. Colmenares<sup>c</sup>

<sup>a</sup> Department of Chemistry, Wright State University, Dayton, OH 45435, USA <sup>b</sup> Department of Chemistry, C.W. Post. L.I.U, Long Island, NY 11548, USA <sup>c</sup> Loker Hydrocarbon Research Institute, USC, Los Angeles, CA 90089, USA


Received 18 March 2008; revised 12 April 2008; accepted 15 April 2008 Available online 20 April 2008

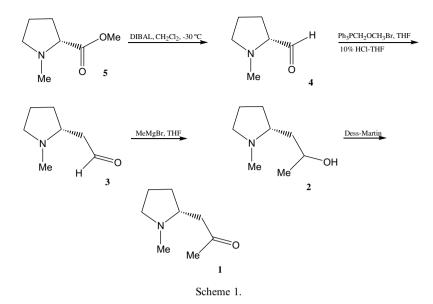
## Abstract

The synthesis of the alkaloid hygrine in a series of six steps starting from readily available proline N-methyl derivative (5) is described. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Hygrine; Alkaloid; Dess-Martin periodinane

Hygrine (1) is an alkaloid present in coca leaves as well as in a variety of other plants. It has been the subject of several biological and pharmacological studies,<sup>1</sup> especially since it is known that hygrine is the precursor of hyoscyamine and scopolamine, both compounds are used in the preparation of a vast number of pharmaceutical products; consequently, there is an increased interest in the development of synthetic routes to this alkaloid in order to investigate structure–activity relationship. Hygrine (1) has been prepared previously<sup>2</sup> by rather




lengthy and tedious synthetic routes. We now present an exceptionally simple synthesis route which provides 1 in good overall yield (Scheme 1); As a result, our approach presents an advantage over a recently published synthesis of hygrine.<sup>3</sup>

Thus, treatment of the readily available  $5^4$  with DIBAL-H in CH<sub>2</sub>Cl<sub>2</sub> at -30 °C afforded aldehyde 4. This product, without further purification, was then reacted with (methoxymethyl)triphenylphosphonium bromide and with KO-t-Bu/THF to generate a methyl vinyl ether. The subsequent acid hydrolysis of the vinyl ether provided the homologated aldehvde 3: treatment of this compound with methyl magnesium bromide afforded 2 in a mixture 2.5:1 (hygroline:pseudohygroline). Finally, the transformation of 2 to hygrine 1 was carried out by the Dess-Martin<sup>5</sup> periodinane procedure; the final product was then purified with flash column chromatography (hexane–AcOEt = 6:4) and its identification was accomplished by comparison of the obtained data with those previously described in the literature.<sup>2,3</sup> All the analytical data are in agreement with the values reported for the optically pure compound, included: bp  $87-88 \text{ }^{\circ}\text{C}$  (23 mm); (lit.:<sup>2c,5</sup> bp  $83-84 \text{ }^{\circ}\text{C}$  (21 mm)); hygrine HCl<sup>6</sup>  $[\alpha]_{D}$  +34.0 (c = 0.5, H<sub>2</sub>O); (lit.<sup>3</sup>  $[\alpha]_{D}$  +34.5 (c = 0.5, H<sub>2</sub>O)).

Thus, an efficient 6-step synthesis of hygrine was accomplished in 35% overall yield.

<sup>\*</sup> Corresponding author. Tel.: +1 516 4245959; fax: +1 516 2993944. *E-mail address:* barevalo@excite.com (E. B. Arévalo-García).

<sup>0040-4039/</sup>\$ - see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.04.098



## Acknowledgements

The authors are grateful to Wright State University, C.W. Post Long Island University Chemistry Departments, and Loker Hydrocarbon Research Institute for partial support of this work.

## **References and notes**

 Some examples: (a) Berkov, S.; Zayed, R.; Doncheva, T. *Fitoterapia* 2006, 77, 179; (b) Jordan, M.; Humam, M.; Bieri, S.; Christen, C.; Poblete, E.; Munoz, O. *Phytochemistry* 2006, 67, 570; (c) Doncheva, T.; Berkov, S.; Philipov, S. *Biochem. Syst. Ecol.* 2006, 34, 478; (d) Berkov, S.; Pavlov, A.; Georgiev, V.; Stanimirova, P.; Kovacheva, P.; Philipov, S. *Annuaire Univ. Sofia Fac. Biol.* 2005, 96, 95; (e) Vitale, A.; Acher, A.; Pomilio, A. J. Ethnopharmacol. **1995**, 49, 81; (f) Humam, M.; Munoz, O.; Christen, P.; Hostettmann, K. Nat. Prod. Commun. **2007**, 2, 743.

- Some examples: (a) Nagasaka, T.; Yamamoto, H.; Hayashi, I.; Watanabe, M.; Hamaguchi, F. *Heterocycles* **1989**, *29*, 155; (b) Langenskioeld, T.; Lounasmaa, M. *Heterocycles* **1983**, *20*, 671; (c) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. **1981**, *103*, 1172; (d) Hill, R. K.; Loeffler, L. J. J. Org. Chem. **1960**, *25*, 2028.
- Lee, J.-H.; Jeong, B.-S.; Ku, J.-M.; Jew, S.-s.; Park, H.-g. J. Org. Chem. 2006, 71, 6690.
- Commercially available. It is also easily synthesized from proline by treatment with SOCl<sub>2</sub>/MeOH, and subsequent addition of MeI and NaH.
- 5. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
- Hygrine was readily transformed into its hydrochloride salt for comparison with the literature data of the same compound (see Ref. 3).